Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2].

Identifieur interne : 003448 ( Main/Exploration ); précédent : 003447; suivant : 003449

Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2].

Auteurs : Leland J. Cseke [États-Unis] ; Chung-Jui Tsai ; Alistair Rogers ; Matthew P. Nelsen ; Holly L. White ; David F. Karnosky ; Gopi K. Podila

Source :

RBID : pubmed:19383098

Descripteurs français

English descriptors

Abstract

This study compared the leaf transcription profiles, physiological characteristics and primary metabolites of two Populus tremuloides genotypes (clones 216 and 271) known to differ in their responses to long-term elevated [CO2] (e[CO2]) at the Aspen free-air CO2 enrichment site near Rhinelander, WI, USA. The physiological responses of these clones were similar in terms of photosynthesis, stomatal conductance and leaf area index under e[CO2], yet very different in terms of growth enhancement (0-10% in clone 216; 40-50% in clone 271). Although few genes responded to long-term exposure to e[CO2], the transcriptional activity of leaf e[CO2]-responsive genes was distinctly different between the clones, differentially impacting multiple pathways during both early and late growing seasons. An analysis of transcript abundance and carbon/nitrogen biochemistry suggested that the CO2-responsive clone (271) partitions carbon into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone (216) partitions carbon into pathways associated with passive defense (e.g. lignin, phenylpropanoid) and cell wall thickening. This study indicates that there is significant variation in expression patterns between different tree genotypes in response to long-term exposure to e[CO2]. Consequently, future efforts to improve productivity or other advantageous traits for carbon sequestration should include an examination of genetic variability in CO2 responsiveness.

DOI: 10.1111/j.1469-8137.2009.02812.x
PubMed: 19383098


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2].</title>
<author>
<name sortKey="Cseke, Leland J" sort="Cseke, Leland J" uniqKey="Cseke L" first="Leland J" last="Cseke">Leland J. Cseke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Alabama, Huntsville, AL 35899</wicri:regionArea>
<placeName>
<region type="state">Alabama</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
<author>
<name sortKey="Rogers, Alistair" sort="Rogers, Alistair" uniqKey="Rogers A" first="Alistair" last="Rogers">Alistair Rogers</name>
</author>
<author>
<name sortKey="Nelsen, Matthew P" sort="Nelsen, Matthew P" uniqKey="Nelsen M" first="Matthew P" last="Nelsen">Matthew P. Nelsen</name>
</author>
<author>
<name sortKey="White, Holly L" sort="White, Holly L" uniqKey="White H" first="Holly L" last="White">Holly L. White</name>
</author>
<author>
<name sortKey="Karnosky, David F" sort="Karnosky, David F" uniqKey="Karnosky D" first="David F" last="Karnosky">David F. Karnosky</name>
</author>
<author>
<name sortKey="Podila, Gopi K" sort="Podila, Gopi K" uniqKey="Podila G" first="Gopi K" last="Podila">Gopi K. Podila</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19383098</idno>
<idno type="pmid">19383098</idno>
<idno type="doi">10.1111/j.1469-8137.2009.02812.x</idno>
<idno type="wicri:Area/Main/Corpus">003590</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003590</idno>
<idno type="wicri:Area/Main/Curation">003590</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003590</idno>
<idno type="wicri:Area/Main/Exploration">003590</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2].</title>
<author>
<name sortKey="Cseke, Leland J" sort="Cseke, Leland J" uniqKey="Cseke L" first="Leland J" last="Cseke">Leland J. Cseke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Alabama, Huntsville, AL 35899</wicri:regionArea>
<placeName>
<region type="state">Alabama</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
<author>
<name sortKey="Rogers, Alistair" sort="Rogers, Alistair" uniqKey="Rogers A" first="Alistair" last="Rogers">Alistair Rogers</name>
</author>
<author>
<name sortKey="Nelsen, Matthew P" sort="Nelsen, Matthew P" uniqKey="Nelsen M" first="Matthew P" last="Nelsen">Matthew P. Nelsen</name>
</author>
<author>
<name sortKey="White, Holly L" sort="White, Holly L" uniqKey="White H" first="Holly L" last="White">Holly L. White</name>
</author>
<author>
<name sortKey="Karnosky, David F" sort="Karnosky, David F" uniqKey="Karnosky D" first="David F" last="Karnosky">David F. Karnosky</name>
</author>
<author>
<name sortKey="Podila, Gopi K" sort="Podila, Gopi K" uniqKey="Podila G" first="Gopi K" last="Podila">Gopi K. Podila</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Clone Cells (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Gene Expression Regulation, Plant (radiation effects)</term>
<term>Genes, Plant (genetics)</term>
<term>Genetic Variation (drug effects)</term>
<term>Genetic Variation (radiation effects)</term>
<term>Genotype (MeSH)</term>
<term>Light (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Organ Size (drug effects)</term>
<term>Organ Size (radiation effects)</term>
<term>Photosynthesis (drug effects)</term>
<term>Photosynthesis (radiation effects)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Plant Stems (anatomy & histology)</term>
<term>Plant Stems (drug effects)</term>
<term>Plant Stems (radiation effects)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Populus (radiation effects)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Seasons (MeSH)</term>
<term>Transcription, Genetic (drug effects)</term>
<term>Transcription, Genetic (radiation effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Carbone (métabolisme)</term>
<term>Clones cellulaires (MeSH)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (génétique)</term>
<term>Gènes de plante (génétique)</term>
<term>Génotype (MeSH)</term>
<term>Lumière (MeSH)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Photosynthèse (effets des radiations)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>RT-PCR (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes végétaux (effets des radiations)</term>
<term>Saisons (MeSH)</term>
<term>Taille d'organe (effets des médicaments et des substances chimiques)</term>
<term>Taille d'organe (effets des radiations)</term>
<term>Tiges de plante (anatomie et histologie)</term>
<term>Tiges de plante (effets des médicaments et des substances chimiques)</term>
<term>Tiges de plante (effets des radiations)</term>
<term>Transcription génétique (effets des médicaments et des substances chimiques)</term>
<term>Transcription génétique (effets des radiations)</term>
<term>Variation génétique (effets des médicaments et des substances chimiques)</term>
<term>Variation génétique (effets des radiations)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Variation</term>
<term>Organ Size</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Taille d'organe</term>
<term>Tiges de plante</term>
<term>Transcription génétique</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Taille d'organe</term>
<term>Tiges de plante</term>
<term>Transcription génétique</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Plant</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Feuilles de plante</term>
<term>Gènes de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Azote</term>
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Variation</term>
<term>Organ Size</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Clone Cells</term>
<term>Gene Expression Profiling</term>
<term>Genotype</term>
<term>Light</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Clones cellulaires</term>
<term>Génotype</term>
<term>Lumière</term>
<term>RT-PCR</term>
<term>Saisons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study compared the leaf transcription profiles, physiological characteristics and primary metabolites of two Populus tremuloides genotypes (clones 216 and 271) known to differ in their responses to long-term elevated [CO2] (e[CO2]) at the Aspen free-air CO2 enrichment site near Rhinelander, WI, USA. The physiological responses of these clones were similar in terms of photosynthesis, stomatal conductance and leaf area index under e[CO2], yet very different in terms of growth enhancement (0-10% in clone 216; 40-50% in clone 271). Although few genes responded to long-term exposure to e[CO2], the transcriptional activity of leaf e[CO2]-responsive genes was distinctly different between the clones, differentially impacting multiple pathways during both early and late growing seasons. An analysis of transcript abundance and carbon/nitrogen biochemistry suggested that the CO2-responsive clone (271) partitions carbon into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone (216) partitions carbon into pathways associated with passive defense (e.g. lignin, phenylpropanoid) and cell wall thickening. This study indicates that there is significant variation in expression patterns between different tree genotypes in response to long-term exposure to e[CO2]. Consequently, future efforts to improve productivity or other advantageous traits for carbon sequestration should include an examination of genetic variability in CO2 responsiveness.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19383098</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>182</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2].</ArticleTitle>
<Pagination>
<MedlinePgn>891-911</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1469-8137.2009.02812.x</ELocationID>
<Abstract>
<AbstractText>This study compared the leaf transcription profiles, physiological characteristics and primary metabolites of two Populus tremuloides genotypes (clones 216 and 271) known to differ in their responses to long-term elevated [CO2] (e[CO2]) at the Aspen free-air CO2 enrichment site near Rhinelander, WI, USA. The physiological responses of these clones were similar in terms of photosynthesis, stomatal conductance and leaf area index under e[CO2], yet very different in terms of growth enhancement (0-10% in clone 216; 40-50% in clone 271). Although few genes responded to long-term exposure to e[CO2], the transcriptional activity of leaf e[CO2]-responsive genes was distinctly different between the clones, differentially impacting multiple pathways during both early and late growing seasons. An analysis of transcript abundance and carbon/nitrogen biochemistry suggested that the CO2-responsive clone (271) partitions carbon into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone (216) partitions carbon into pathways associated with passive defense (e.g. lignin, phenylpropanoid) and cell wall thickening. This study indicates that there is significant variation in expression patterns between different tree genotypes in response to long-term exposure to e[CO2]. Consequently, future efforts to improve productivity or other advantageous traits for carbon sequestration should include an examination of genetic variability in CO2 responsiveness.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cseke</LastName>
<ForeName>Leland J</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rogers</LastName>
<ForeName>Alistair</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nelsen</LastName>
<ForeName>Matthew P</ForeName>
<Initials>MP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>White</LastName>
<ForeName>Holly L</ForeName>
<Initials>HL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karnosky</LastName>
<ForeName>David F</ForeName>
<Initials>DF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Podila</LastName>
<ForeName>Gopi K</ForeName>
<Initials>GK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002999" MajorTopicYN="N">Clone Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009929" MajorTopicYN="N">Organ Size</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19383098</ArticleId>
<ArticleId IdType="pii">NPH2812</ArticleId>
<ArticleId IdType="doi">10.1111/j.1469-8137.2009.02812.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Alabama</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Karnosky, David F" sort="Karnosky, David F" uniqKey="Karnosky D" first="David F" last="Karnosky">David F. Karnosky</name>
<name sortKey="Nelsen, Matthew P" sort="Nelsen, Matthew P" uniqKey="Nelsen M" first="Matthew P" last="Nelsen">Matthew P. Nelsen</name>
<name sortKey="Podila, Gopi K" sort="Podila, Gopi K" uniqKey="Podila G" first="Gopi K" last="Podila">Gopi K. Podila</name>
<name sortKey="Rogers, Alistair" sort="Rogers, Alistair" uniqKey="Rogers A" first="Alistair" last="Rogers">Alistair Rogers</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<name sortKey="White, Holly L" sort="White, Holly L" uniqKey="White H" first="Holly L" last="White">Holly L. White</name>
</noCountry>
<country name="États-Unis">
<region name="Alabama">
<name sortKey="Cseke, Leland J" sort="Cseke, Leland J" uniqKey="Cseke L" first="Leland J" last="Cseke">Leland J. Cseke</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003448 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003448 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19383098
   |texte=   Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19383098" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020